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This paper deals with turbulent or chaotic phenomena which occur in the 
system governed by Duffing's equation, a special type of two-dimensional 
periodic system. By using analog and digital computers, experiments are 
carried out with special reference to the change of attractors and of average 
power spectra of the random processes under the variation of the system 
parameters. On the basis of the experimental results, an outline of the 
random process is made clear. The results obtained in this paper will be 
applied to various physical problems and will also serve as material for 
the development of a proper mathematics of this phenomenon. 
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1. I N T R O D U C T I O N  

Var ious  physical  p rob lems  are  descr ibed by Duffing's  equat ion  

d %  k dx 
dt 2 + dt + f ( x )  = e(t) (1) 

where e(t)  is a pe r iod ic  funct ion o f  the per iod  27r. This equa t ion  itself  is 
s imple and  determinist ic ,  but  in the real  system governed by Eq. (1) cer tain 
r a n d o m  phenomena  can be observed.  Such r a n d o m  phenomena  could  be 
a t t r ibu ted  to  small ,  uncer ta in  factors  which are usual ly  neglected in 
fo rmula t ing  ma themat i ca l  models  f rom the real  systems. 

The uncer ta in  factors  lie between causes and  effects in physical  systems. 
When  these fac tors  are small ,  their  influence can be neglected in many  
cases and  the p h e n o m e n a  are  t rea ted  as determinis t ic  processes.  But in 
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nonlinear systems, however small uncertain factors may be, they sometimes 
bring statistical properties into phenomena, depending upon the global 
structure of the solutions of the differential equations of the system. 

Recently, phenomena of this kind, generally called turbulent or chaotic 
behavior, have been vigorously attacked by many researchers in various 
fields, such as plasma physics, fluid dynamics, and chemical reactions, as 
well as in biological, economic and social Sciences. The phenomena are 
treated by difference equations (~-3~ and also by ordinary differential equa- 
tions3 4-v Mathematical justifications of the treatments have been argued 
by many researchers. Of these, the work by Ruelle and Takensff ~ Bowen, (9~ 
and Marsden et al. a~ is notable. 

We have carried out computer experiments for the electric circuit with 
nonlinear inductance under the impression of a sinusoidal voltage. The 
circuit is described by Duffing's equation. In the computer-simulated system 
of the equation, turbulent or chaotic oscillatory phenomena are observed 
for some values of the system parameters. On the basis of the experimental 
results, we present the following interpretations about the phenomenon. C~2~ 
The phenomenon cannot be represented by a single solution of the equation, 
but by a bundle of solutions which is asymptotically (orbitally) stable and 
contains infinitely many unstable periodic solutions. The representative 
point of the physical state wanders randomly among the solutions of this 
bundle under the influence of small uncertain factors, such as random noise. 
Though the statistical properties arise from uncertain factors, the power 
spectrum of the random process depends practically not on the nature of 
uncertain factors but on the structure of the bundle of solutions. We have 
called the phenomenon represented by the bundle of solutions the randomly 
transitional phenomenon. ~13~ 

This paper also discusses the randomly transitional process in the system 
governed by Duffing's equation with particular attention to the transition 
of the process under the variation of the system parameters. 

2. RANDOMLY TRANSITIONAL PROCESS 

Following the previous report, ~lz~ we consider the equation 

d2x  k dx  
dt  2 + dt + xa = B cos t 

o r  

dx  
-tiT=Y, ~" = - - I c y -  x a + B c o s  t 

dt  

as a specific example of Duffing's equation. 

(2) 

(3) 
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2.1. Bundle of Solutions Representing Randomly 
Transitional Process 

To begin with, we show illustrative pictures for a system governed by 
Eqs. (3) with the values of parameters k and B specified by the following 
equations: 

A = (k, B) = (0.1, 12.0) (4) 

In the system two types of steady phenomena occur, depending on the initial 
conditions, one of which represents a deterministic process and the other a 
randomly transitional process. Solution curves representing steady states in 
the txy space are shown in Fig. 1. Figure la shows the periodic solution 
representing the deterministic process. Figure lb shows the outline of a 
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Fig. 1. Solution curves in the txy space. 
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Fig. 2. Trajectories of the computer solution. 

bundle of solutions representing the random process. The bundle is asymp- 
totically (orbitally) stable and is reproducible in every computer experiment. 
Figures 2a and 2b show the trajectories of computer solutions in the x y  

plane. In the figures, positions of the representative point at the instant 
t = 2nrr (n e Z +) are marked x .  The trajectory of Fig. 2b is not repro- 
ducible in every analog computer simulation. Therefore, this trajectory is a 
realization of the randomly transitional process. 

Here we introduce a discrete dynamical system on the x y  plane by 
using the solutions of Eqs. (3). To this end, let us consider the solution 
x = x(t ,  Xo, Yo), Y = y(t ,  xo,  Yo) of Eqs. (3), which, when t =- 0, is at the 
point Po = (Xo, Yo) of the x y  plane. Let Pl = (xl, y~) denote the point specified 
by x~ = x(2~, Xo, Yo), Y~ = y(2~r, Xo, Yo) ; then we define a C ~-diffeomorphism 
f~ 

fx: R2--~R 2, P 0 ~ ' P l ,  A = (k,B) (5) 

of the x y  plane into itself, or a discrete dynamical system on R 2. 
The steady state in the system governed by Eqs. (3) is represented by an 

attractor of the diffeomorphism fa. Figures 3a and 3b show the attractors 
observed in the same system as in Figs. 1 and 2. Figure 3a shows a com- 
pletely stable fixed point representing the deterministic periodic process, 
while Fig. 3b shows an outline of the attractor representing the randomly 
transitional process. 

2.2. Summary  of the Previous Investigat ion ~12) 

In this section we briefly explain the main results on the randomly 
transitional process in the system governed by Eqs. (3) obtained in our 
previous investigation. 
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(1) A randomly transitional process occurs resulting from the global 
structure of the solutions of  the nonlinear differential equation. This phenom- 
enon is not a special one which appears only for particular values of the 
system parameters, but can be observed in a rather wide range of values. 

(2) The bundle of solutions is a set of solutions whose initial points at 
t = 0 belong to the attractor of the corresponding diffeomorphism fa.  The 
attractor will reasonably be defined by the asymptotically stable, invariant, 
closed set o f fx  containing infinitely many unstable minimal sets which are 
connected to one another by the influence of uncertain factors in the real 
system. The attractor M corresponding to Fig. 3b is identical with a closure 
of unstable manifolds of the directory unstable fixed point 1D1 of f~ ,  i.e., 
M = C1 W~(ID1). The set M = C1 W"(1D ~) contains infinitely many 
periodic points. In fact, as shown in Fig. 4 of Ref. 12, the unstable mani- 
folds W~(ID ~) intersect the stable manifolds WS(ZD ~) forming a homoclinic 
cycle. However, the existence of a minimal set representing a nonperiodic 
solution is not known. The structural stability of  M in the sense of Andronov-  
Pontryagin seems not to hold. 

(3) Experimental results reveal that mean values mx(t) and my(t) of the 
randomly transitional processes {X(t)} and { Y(t)} are periodic functions of 
t with period 27r. It is also clear that the bundle of solutions is periodic in t 
with the same period. Hence these processes are regarded as periodic non- 
stationary processes. As mentioned before, the average power spectra of 
these processes depend practically not on the nature of uncertain factors 
but on the structure of  the bundle of  solutions. The other statistical charac- 
teristics of the process depend on the nature of uncertain factors as well as 
on the structure of  the bundle of solutions. However, no attempt has been 
made to relate the transition probability of  the process with the nature of 
uncertain factors. 
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3. EXPERIMENTAL RESULTS 

By making use of analog and digital computers, we show some experi- 
mental results concerned with the randomly transitional process that occurs 
in the computer-simulated systems governed by Eqs. (3). The region in which 
this type of process occurs is roughly estimated to be in the range k = 0-0.3 
and B = 6-13. Within this range, however, there are other regions in which 
different types of steady states are sustained and they sometimes overlap 
partly with one another. Under these circumstances, we focus our attention 
on a transition of the randomly transitional process in the case when the 
system parameter, either k or B, is varied from the value specified by Eq. (4). 

3.1. Dependence of the At t ractors  on the System Parameters 

First we show the change of attractors of the system governed by 
Eqs. (3), particularly in the case where the parameter B is varied while k is 
kept constant, k -- 0.1. Outlines of the attractors in such a case are shown 
in Figs. 4. Figure 4a shows a completely stable 3-periodic group of  the 
diffeomorphism fx. These periodic points represent an ultrasubharmonic 
oscillation of  order 7/3, i.e., the oscillation whose principal frequency is 7/3 
times the frequency of  the external force. When B is slightly increased, a 
fluctuation is brought into the process. This state is shown in Fig. 4b. Further 
increase in B results in the abrupt growth of the fluctuation and the randomly 
transitional process develops. The randomly transitional process continues 
until B reaches 13.3 and the attractors in such a case are shown in Figs. 
4c-4g. Needless to say, the representative points of  the state which give the 
outline of  the attractor are plotted after the transient has vanished in the 
computer-simulated system. A catastrophe occurs at some value of  B be- 
tween 13.3 and 13.4, and the randomly transitional process is replaced by 
the harmonic oscillation. This transient state is sketched in Fig. 4h. When 
B is decreased from 13.4, the harmonic oscillation is sustained until B 
reaches 11.6, but below 11.5 only a randomly transitional process occurs. 
Hence, for values of B between 11.6 and 13.3, there are two types of steady 
phenomena, i.e., the randomly transitional processes and the harmonic 
oscillations. An example of boundaries of the domains of attraction for 
these two states is given in Fig. 5 of Ref. 12. 

Next we consider the change of attractors in the case where the param- 
eter k is varied while B is kept constant, B = 12.0. Outlines of the attractors 
in such a case are shown in Fig. 5. From these results, we see that when the 
damping coefficient k is small, the size of the attractor is large, but as k 
increases, it decreases, and finally the attractor becomes 2-periodic group 
and then the fixed point of the diffeomorphismf~. 
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Fig .  4.  Out l ines  o f  the  a t trac tors  for  v a r i o u s  v a l u e s  o f  B;  k = 0 .10 ,  

3.2. Dependence of the Exponentlike Quantit ies on 
the System Parameters 

Here, we estimate the exponentlike quantities el and e2 in order to give 
the stochasticity properties of  the attractors obtained in the preceding 
section. These quantities are introduced following the characteristic expo- 
nents of  the fixed (periodic) point. One of them el indicates the rate of  
divergence of  nearby points in the attractor and the other e2 the rate of  
attraction of  the attractor. 
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We compute  the coefficients A',  B' ,  C' ,  and D'  for  sufficiently small d 
and  arbi t rary  point  Po by letting Pl  = fa(Po) = (x l ,  Yl), ql = fa(qo) = 
(xl  + A'd, Yl + B'd) ,  and rl = fa(ro) = (xl  + C'd, Yl + D'd) ,  where Po = 
(xo, Yo), qo = (xo + d, Yo), and ro = (Xo, Yo + d). Then we obtain  the quan-  
tities el = max{[rnl[, Im2l} and P2 = min{Imll,  ]m21}, where ml  and m2 are 
the roots  o f  the following quadrat ic  equat ion:  

rn 2 --  (A '  + D ' ) m  + ( A ' D '  - B ' C ' )  = 0 
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Table i. Exponentlike Quantities Indicating Stochasti- 
city Properties for the Attractors in Figs. 4 and 5 ~ 

m 

h 

Case k B el e2 

Fig. 4a 0.10 9.8 -0.050 _+0.108i *'~ 
b 0.10 9.9 0.065 -0.166 
c 0.10 10.0 0.102 --0.202 
d 0.10 11.0 0.114 -0.214 
e 0.10 12.0 0.149 -0.249 
f 0.10 13.0 0.182 -0.282 
g 0.10 13.3 0.183 -0.284 
h 0.10 13.4 
i 0.10 13.4 -0.050 + 0.383i* 

Fig. 5a 0.01 12.0 0.189 --0.200 
b 0.03 12.0 0.179 -0.209 
c 0.05 12.0 0.172 -0.222 
d 0.10 12.0 0.149 -0.249 
e 0.20 12.0 0.149 -0.350 
f 0.30 12.0 0.119 -0.419 
g 0.31 12.0 0.085 -0.395 
h 0.32 1 2 . 0  -0.005* -0 .315 '  
i 0.34 12.0 -0.052* -0.288* 

Asterisks denote characteristic exponents for the periodic solu- 
tions. 

Proceeding in this manner ,  we get sequences of  positive numbers  o~ ) 

and  p~o for every image p~ = fai(po) (i = 0, 1, 2,...) and  we can define the 

exponentl ike quanti t ies 
n - - 1  

= - In p(2 ~ (6) e(l"~ 2nrr In e(2n~ - 2--n~ ~= 

F r o m  the numerical  experiments, we notice that  the limits 

el = lim el  "~, e2 = lim e~ "> (7) 
n - - *  co n ~ o o  

seem to exist and  they are independent  of  bo th  d and  Po. Table I indicates 

the exponentl ike quantit ies thus obtained for the attractors in Figs. 4 and 5. 

3.3. Dependence  of  the  Average  P o w e r  Spect ra  on 
the  System Parameters  

In  this section, we estimate the mean  value and  the average power 
spectrum of the r andomly  t ransi t ional  process {X(t)} for some representative 
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values of  the system parameters. To this end, we regard the process {X(t)} 
as the periodic random process {Xr(t)} with sufficiently long period T, which 
is a multiple of  2~r. Then a realization xr(t) is expanded into Fourier series as 

xr(t)  = �89 + ~ (am cos mwot + bm sin mwot), oJ o = 2~r/T (8) 
m = l  

where 
~TI2 

am = (2/T)J-r /2  Xr(t) cos mwot dt, 

t.TI2 
b m =  (2/T)J-IT/2 xr(t)  sin moJot dt, 

m = 0 , 1 , 2  .... 

m = 1 ,2 ,3  .... 

F rom these coefficients, the mean value mx(t) and the average power spectrum 
ebx(~) of  the random process (X(t)}  are estimated as follows: 

mx(t ) = ( X ( t ) )  - (XT(t) )  

= (�89 + ~ ((am)cos moJot + (bin)sin mwot} (9) 
m = l  

q~x(o~) = lim ( l /T)  x~(t)e -~~ dt - ~x(m~oo) 
T ~  oo "J - T I 2  

= (2zr/c~188 2 + bm2)), Wo = 2rr/T (10) 

Let us give the results estimated by using Eqs. (9) and (10) for some selected 
values of  the system parameters in the preceding section. Every mean value 
mx(t) turns out to be a periodic function in t with period 2rr, having the form 

mx(t) = ~ (am cos mt + bm sin mt) (11) 
m = 1 , 3 , 5 , . . .  

The parameters used and some of the Fourier coefficients in Eq. (l l) are 
listed in Table If.  Figure 6 shows the average power spectra for the same 

Table II. Mean Value, Eq. (11), of the Randomly Transitional Process {X(t )}  

A Coefficients in Eq. (11) 

Case k B al b1 aa ba a5 b5 

a 0.10 10.0 1.85 0.17 0.90 -0.01 0.20 0.01 
b 0.10 11.0 1.79 0.19 1.09 -0.13 0 .24 --0.02 
c 0.10 12.0 1.72 0.22 1.21 -0.26 0.25 --0.06 
d 0.10 13.0 1.61 0.26 1.30 -0.50 0 .24 -0.10 
e 0.01 12.0 1.64 0.03 1.12 -0.08 0.18 -0.01 
f 0.20 12.0 1.74 0.43 1.17 -0.43 0.24 -0.08 
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system parameters as in Table II. In the figure, line spectra indicate the 
periodic components of  the mean values. Numerical values attached to the 
line spectra represent the powers �88 z q- bmZ), m = 1, 3, 5 ..... concentrated 
on those frequencies. Table I I I  indicates the power 

lira (1/T)fr_il (xr2(t))  dt (12) 
T--* ~o 2 

{X(t)}. In the table, powers of  the periodic of  the random process 
component  

~ (a.? + b~ ~) (13) 
m = 1 , 3 , 5 , . . .  

and of  the random component  

(1/2rr) ~bx(w) dw - �89 
co m =  1 , 8 , 5 , . . .  

are also given. 

(am 2 -i- b,. 2) (14) 

Case 

Table III. Power of the Random Process {X(t )}  
, i  

,~ Power of Power of Power of 
the periodic random 

k B process component, component, 
Eq. (12) Eq. (13) Eq. (14) 

a 0.10 10.0 2.79 2.14 0.64 
b 0.10 11.0 2.93 2.25 0.68 
c 0.10 12.0 3.08 2.30 0.78 
d 0.10 13.0 3.29 2.34 0.95 
e 0.01 12.0 3.28 2.00 1.27 
f 0.20 12.0 3.11 2.42 0.69 

4. D I S C U S S I O N  

The structure of  the attractor and the character of  the average power 
spectrum are investigated in detail in Section 4 of  Ref. 12. Some unanswered 
problems about the phenomenon are also summarized there. Here we 
discuss the experimental results obtained in the preceding section, with 
particular attention to the transition of the phenomena under the variation 
of  the system parameters. 

In the following descriptions, the symbol ~Sj ~ indicates the ith com- 
pletely stable n-periodic point and the subscript j ( j  - 1, 2 ..... n) represents 
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the order of the successive movements of the images under the diffeomorph- 
ism f~ in the group. Similar symbols are applied to the directly unstable (D) 
and inversely unstable (I) periodic points. The point S is sometimes called 
the sink and both D and I are the saddles. 

(1) Transition from Fig. 4a to Fig. 4b is regarded as the SI branching; 
namely, 

5'13 ~ (S16 - I/3 - S46), S~ 6 -+ (S~ 2 - /1 ~ - S~ 2) .... 

This type of bifurcation is equally called a pitchfork bifurcation. As the 
branching develops, the domains of attraction for the sinks Sj" become 
narrow. When uncertain factors acting on the system become relatively 
large in comparison with the domains of attraction for the sinks, the ran- 
domly transitional phenomenon arises. But the details about the continuation 
of the order n of  SI branching and the appearance of the homoclinic points 
are not known. 

(2) Three point sets in Fig. 4b are regarded as the closure of the unstable 
manifolds C1 W"(Ig) of the saddles Ij 3 ( j  = 1, 2, 3), which are individually 
invariant under f 3 .  As the parameter B increases, these point sets grow 
rapidly and connect with one another and become the closed invariant set 
CI W~'(1D1). 

(3) In Fig. 6a, the peaks of the random component exist at w = 1/3, 
7/3 ..... This indicates that the randomly transitional process of this case has 
developed from the ultrasubharmonic oscillation of order 7/3. We see in 
Fig. 6b that the peak at r -- 7/3 in Fig. 6a splits into two parts and the peaks 
appear at r = 2.26 and 2.41. These are approximately equal to 13/6 and 
15/6. This means that the representative point of the state frequently remains 
in the neighborhood of the solution which passes through the 6-periodic 
group appeared in the course of SI branching. 

We see in Fig. 6 and in Table III that the powers of the random com- 
ponent become large when B is large and k is small. Figures 5e-5h and 
Fig. 6f show the transition from the randomly transitional process to the 
ultrasubharmonic oscillation of order 5/2, tracing the inverse process as 
stated above in (1) and (2). 

(4) A catastrophe from Fig. 4g to Fig. 4i occurs when 1D1 is chained 
to 2D1 through a transition chain. Though not shown in the figure, the point 
1DZ is a saddle contained in the attractor of Fig. 4g. A transition chain is 
made up of branches consisting of the manifolds W~(~D ~) and WS(2D ~) 
which intersect at heteroclinic points. Outlines of the stable and unstable 
manifolds of  the saddle 2DZ are sketched in Fig. 4h. This type of jump 
phenomenon is first reported here and cannot be accounted for without 
considering the global aspect of the diffeomorphism fa.  

(5) When B is decreased, the sink S ~ in Fig. 4h disappears at some 
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value of B between 11.6 and 11.5. This transition is regarded as S D  extinction; 
namely, 

$1-2  D 1 --+ coalescence -+ extinction 

The jump phenomenon from the harmonic oscillation to the randomly 
transitional process takes place in this case. 

(6) Turbulent or chaotic phenomena which occur in systems governed 
by three-dimensional autonomous equations, e.g., Lorenz' equations, are 
well studied and strange attractors have become the object of research 
interest. The bundle of solutions introduced in this report can be regarded 
as a special case of strange attractors. In fact, we can consider Eqs. (3) as 
a special type of three-dimensional autonomous system in which all points 
of the form (t + 2mr, x, y) (n e Z) are coincident. Therefore, it seems that 
a large part of our results can be applied to these problems. 

5. C O N C L U S I O N  

Following our previous work, ~2~ randomly transitional processes have 
been studied in the physical system governed by Duffing's equation. By 
using analog and digital computers, experimental results are obtained 
about the dependence of the processes on the system parameters. From 
these results, the transition of the attractors and the average power spectra 
of the processes under the variation of the system parameters have been 
clarified. 

The randomly transitional process develops from ultrasubharmonic 
oscillations through SI branching. This transition is reversible, while catas- 
trophe through a transition chain is irreversible from the randomly transi- 
tional process to the periodic oscillation. The attractors representing the 
randomly transitional processes are characterized by exponentlike quantities. 
Time evolution characteristics of randomly transitional processes are repre- 
sented by power spectra. The results obtained in the series of our reports 
will be applied to various physical problems. They also deserve attention 
as material for mathematical study. 
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